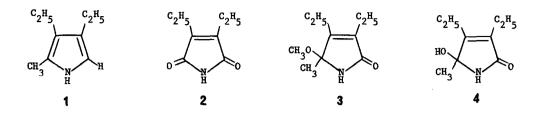
ON THE PHOTO-OXIDATION OF 3,4-DIETHYL-2-METHYLPYRROLE*

Gary B. Quistad[†] and David A. Lightner Department of Chemistry, University of California Los Angeles, California 90024 (USA)[‡]

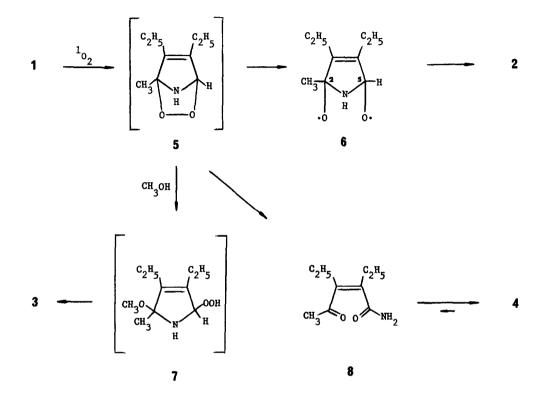
(Received in USA 17 August 1971; received in UK for publication 15 October 1971)


Although the photo-oxidation of pyrrole¹ and various phenyl substituted pyrroles²⁻⁵ has been studied extensively, such has not been the case with alkylpyrroles and the nature of their photo-oxidation products is largely unknown. Alkylpyrroles are unstable in the presence of air and light,^{6,7} but only the <u>autooxidation</u> products of 2,4-dimethylpyrrole, 2,3,4-trimethylpyrrole and 2,4-dimethyl-3-ethylpyrrole have had their structures proved.⁷ In this communication we report on the first photo-oxygenation of a trialkylpyrrole in which we have discovered several new types of products one of which involves dealkylation of an α -alkyl substituent.

3,4-Diethyl-2-methylpyrrole⁸ (1), was photolyzed⁹ as a dilute (0.2% w/v) methanolic solution containing 3 mg % Rose Bengal (${}^{1}O_{2}$ sensitizer) for four hours while bubbling a slow stream of oxygen through the reaction vessel. After evaporation of the methanol <u>in vacuo</u> at room temperature, the crude photolysate was chromatographed on a silica gel column (E. Merck, Darmstadt). Ethyl acetate eluted three components (60% of the total photolysate) which were separated by preparative thin-layer chromatography on silica gel (M. Woelm, Eschwege, 1 mm, ether).

[‡]Contribution No. 2882.

^{*} Pyrrole Photo-oxidation II. For the preceding paper see G. B. Quistad and D. A. Lightner, Chem. Commun., 1099 (1971).


[†]National Defense Education Act Fellow, 1969-present.

A product of R_f 0.93 was obtained in 3% yield and proved to be diethylmaleimide (2) [mp 66-69°, (lit. mp 68°)¹⁰] which was characterized by comparison with an authentic sample. A second product, yellow oil (l1%), R_f 0.47, was identified as 3,4-diethyl-5-methoxy-5-methyl-3-pyrrolin-2-one (3). The structure of 3 was confirmed by its nuclear magnetic resonance spectrum (nmr):¹¹ (CCl₄) δ 1.03 (t, 3H, CH₃, J = 8 Hz), 1.12 (t, 3H, CH₃, J = 8 Hz), 1.43 (s, 3H, CH₃), 2.22 (q, 4H, 2 CH₂, J = 8 Hz), 2.91 (s, 3H, OCH₃), 7.72 (s, 1H, N-H); and its mass spectrum:¹¹ m/e (relative intensity) 183 [M⁺] (18%), 168 [M-CH₃] (22%), 152 [M-OCH₃] (100%). The major product, R_f 0.25, (40%) proved to be 3,4-diethyl-5-hydroxy-5-methyl-3-pyrrolin-2-one (4), mp 121-123° after recrystallization from carbon tetrachloride-hexane. The structure of 4 was established from its nmr spectrum: (CCl₄) δ 0.99 (t, 3H, CH₃, J = 8 Hz), 1.16 (t, 3H, CH₃, J = 8 Hz), 1.46 (s, 3H, CH₃), 2.10 (q, 2H, CH₂, J = 8 Hz), 2.31 (q, 2H, CH₂, J = 8 Hz), 7.73 (s, 1H, N-H): its mass spectrum <u>m/e</u> (relative intensity) 169 [M⁺] (43%), 154 [M-CH₃] (59%), 151 [M-H₂0] (53%), 140 (99%), 136 (100%); and its infrared spectrum:¹¹ (CHCl₃) 3330 cm⁻¹ (0-H), 1685 (C=0).

In the preceding results, we observed the first dealkylation of an alkylpyrrole resulting in direct formation of an imide photoproduct (2).¹² The dealkylation reaction probably proceeds via the presumed intermediate endoperoxide $(5)^{1,12}$ as shown in Scheme 1 first by thermal homolysis of the 0-0 bond (to 6) followed by loss of a methyl radical [<u>cf</u> <u>t</u>-butoxy radical — acetone + methyl radical¹³] and a hydrogen atom. The formation of 5-methoxylactam (3) was expected from photolysis of 1 in methanol. Similar products are found from the dye-sensitized photo-oxidation of furan, ¹⁴ pyrrole^{1,12} and 3,4-diethylpyrrole.¹² However, 2-methylfuran and 2,5-dimethylfuran give the 2-methyl-5-hydroperoxy product.^{14,15} A probable mechanism for the formation of 3 involves attack by methanol at C-2 to open the endoperoxide ring (Scheme 1). The resultant hydroperoxide (7) is not isolated and presumably rapidly decomposes to 3. The predominant formation of the 5-hydroxylactam (4)

was unanticipated and an equivalent reaction has not been reported previously in other pyrrole photo-oxidations. Whether the mechanism involves an intramolecular source of hydrogen (viz. the N-H or C₅-H) or H-abstraction occurs from methanol is not clear. An intermediate such as 6 could presumably collapse directly to 4 simply by transfer of the C₅-H to the oxygen at \sim C-2. However, an alternative mechanism (Scheme 1) might involve collapse of 5 to the α,β unsaturated keto-amide 8 followed by cyclization to 4. The mechanistic details of these reactions and studies on the photo-oxidation of other alkylated pyrroles are currently under investigation in our laboratories.

<u>Acknowledgement</u>: The authors gratefully thank the National Science Foundation (GP 9533) and the Petroleum Research Fund of the American Chemical Society (4949-AC4) for supporting this work. All mass spectra were determined by Miss Elizabeth Irwin.

References

1.	P. de Mayo and S. T. Reid, Chem. Ind. (London), 1576 (1962).
2.	H. H. Wasserman and A. Liberles, <u>J. Amer. Chem. Soc.</u> , <u>82</u> , 2086 (1960).
3.	H. H. Wasserman and A. H. Miller, <u>Chem</u> . <u>Commun</u> ., 199 (1969).
4.	G. Rio, A. Ranjon, O. Pouchet and M-J. Scholl, <u>Bull. Soc</u> . <u>Chim France</u> , 1667 (1969).
5.	R. W. Franck and J. Auerbach, J. Org. Chem., 36, 31 (1971).
6.	W. Metzger and H. Fischer, Justus Liebigs Ann. Chem., 527, 1 (1937).
7.	A. R. Katritzky, M. R. Nesbit and E. Höft, <u>Tetrahedron Lett</u> ., 2028 (1968); <u>ibid</u> ., 3041
	(1967).
8.	H. Fischer and H. Orth, Die Chemie des Pyrrols, I Band, Akademische Verlagsgesell-
	schaft M.B.H., Leipzig, (1934), p. 57.
9.	Colortran tungsten-halogen quartz lamp, Berkey-Colortran Inc., 120 volt, 1000 watt,
	code B-5-32, run at 50 volts.
10.	Reference 7, p. 398.
11.	All mass spectra were determined on a CEC 491 MS-21; all nuclear magnetic resonance
	spectra were run on a Varian T-60 instrument; infrared spectra were recorded using
	a Perkin-Elmer 700 spectrometer.
12.	We previously reported direct imide formation from 3,4-diethylpyrrole which does not
	involve dealkylation. G. B. Quistad and D. A. Lightner, <u>Chem. Commun</u> ., 1099 (1971).
13.	W. A. Pryor, Introduction to Free Radical Chemistry, Prentice-Hall, New Jersey (1966).
14.	K. Gollnick and G. O. Schenck in 1.4-Cycloaddition Reactions, J. Hamer, ed., Academic
	Press, New York (1967).
15.	C. S. Foote, M. T. Wuesthoff, S. Wexler, I. G. Burstain, R. Denny, G. O. Schenck
	and K-H. Schulte-Elte, <u>Tetrahedron</u> , 23, 2583 (1967).